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Synopsis
Let Fq be a finite field and let Fq[x] denote its polynomialring. Let ACFJx] denote a sequence of 
polynomials and A(n) the counting number Card {f 6 A|3f S n} where 3f denotes the degree of f.

A sequence ACFq [x] is said to be an asymptotic basis of order 2 if all polynomials of sufficiently 
high degree lie in A + A = 2A and an asymptotic complementary sequence is defined analogously.

Let further P denote the sequence of irreducible polynomials in Fq[x]. The subject of this paper 
is to translate two principal results of a chapter of the book of H. Halberstam and K. F. Roth to 
the case of a polynomialring over a finite field.

We shall use an idea of Erdös to make the space of polynomial sequences into a probability 
space.

We then prove the following two existence theorems by showing that the property one looked for 
holds with probability 1.

There exist:
— a thin asymptotic basis of order two
— an asymptotic complementary sequence to P such that the counting number B(n) << n2.
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§ 1. Introduction .

Let Fq be a finite field of q = pm, in e N elements and let Fq[x] denote its 
polynomialring. The degree of a polynomial is denoted df. We denote by sign f 
the leading coefficient of f. The absolute value of a polynomial f is defined by 
|f| = q3f. We can assume that the polynomials in Fq [x] are arranged in lexico­
graphical order (= < ) based on an arbitrary ordering of Fq.

Let A C Fq [x] denote a sequence of polynomials and A(n) denote Card 
{feA|9f n}. Further let P denote the sequence of irreducible polynomials 
in Fq [x].

We denote by rf(A) the number of representations of f in the form:

f=f' + f", f',f" e A, df'=df, 3f" Of. (1.1)

Also let Rf(A) denote the number of representations of fin the form:

f=p + f', p e P, f'eA, 9p = 9f, sign p = sign f. (1-2)

Definition 1.1.
A C Fq [x] is said to be an asymptotic basis of order 2 if all polynomials of 
sufficiently high degree lie in A + A = 2A.

Definition 1.2.
For a given sequence A G Fq[x] the sequence B is said to be “complementary” 
to A if the sequence A + B contains all polynomials of sufficiently high degree.

The subject of this paper is to translate two principal results of a chapter of 
the book of H. Halbertstam and K. F. Roth to the case of a polynomialring over 
a finite field.

Discussion and introduction of the first result.
The following question is a direct translation to the polynomialring Fq [x] of the 
same question raised by S. Sidon (see [1]) concerning the existence and nature 
of certain integer sequences A whose representation functions rn (A) are bounded 
or in some sense exceptionally small.
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Does there exist an asymptotic basis A C Fq [x] of order 2 which is economical in 
the sense that, for every e > 0

By elementary methods we have proved the existence of a subset A of Fq [x] which 
is a basis of order two and have zero-density (see [2]).

By probability methods we shall obtain theorem 1.1 below which is mush 
sharper than is required for an answer to the question above.

Theorem 1.1.
There exists an asymptotic basis of order 2 such that

3f<^ rf (A) << df for large 3f. (1-3)

It should be remarked that the proof of theorem 1.1 is based on Bernstein’s 
improvement of Chebychev’s inequality (see the book of A. Renyi: Probability 
theory [3]).

Discussion and introduction of the second result.
By elementary methods we have proved the existence of a complementary 

sequence B to P such that

B(n)<n3 (see [2]) (1.4)

By probability methods we shall prove that we can reduce the factor n3 of the 
right hand side of (1.4) to n2.

The proof of this result is rather complicated and requires beside the pro­
babilistic machinery also some deep results concerning the distribution of ir- 
reducibles in the ring over a finite field. (See the paper of D.R. Ilayes and the 
work of Georges Rhin [4], [5]).

Further is should be remarked that the definition of Rf(A) is essential and will 
affect the result. If for instance we let Rf(A) be the number of representations 
of f in the form f = p + f', p e P, f'e A, 3p < 3f we would not by this method 
obtain the estimate n2 but only n3 in (1.4). We state the theorem as follows.
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Theorem 1.2.
Let P denote the sequence of irreducible polynomials in Fq[x]. There exists a 
“complementary” sequence such that the counting number

Finally we remark that these theorems correspond to results obtained by Erdös- 
Renyi for integer sequences (see [1]) and can be considered as their directly 
translations to the polynomialring Fq [x].

I am very grateful to professor Georges Rhin (Metz, France) to have com­
municated his work
“Repartition modulo 1 dans un corps de series formelles sur un corps fini”.

Also I would like to thank professor Asmus L. Schmidt, Copenhagen for his 
comments and very helpful instruction.

2. Probability methods on the space of sequences 
of polynomials in Fq [x]

We shal use an idea of Erdös to impose a probability measure on the space of 
polynomial sequences such that (in the resulting probability space) almost all 
polynomial sequences have some prescribed rate of growth.

From now on we use w to denote an (infinite) subsequence of Fq[x]. Let Q 
denote the space of all such sequences w. We shall need the following variant of 
a theorem from Halberstam and Roth’s book [1] chapter III.

Theorem 2.1.
Let

<PB|g e FqM} (2.1)

be real numbers satisfying
0£p,Sl (geFJx]) (2.2)

Then there exists a probability space (Q,S,P) with the following two properties:

For every polynomial g e Fq [x] the event 
B<g) = {w : g e w} is measureable and P(B(g)) = pg .

(2-3)

The events B(g), g e Fq[xJ are independent. (2-4)
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Further we assume that the sequence {pB} of probabilities (introduced in theorem 
2.1) satisfies the following conditions:

0 < Pg < 1, g e Fq[x]. (2.5)

If Sg = Sf then pg = pf. (2-6)

pB 1 0 as 3g -> oo . (2-7)

We denote /g(w) the characteristic function of the event B(g). Then (2.4) is 
equivalent to saying that /g,geFq[x] are independent (simple) random var­
iables. Further we shall need the following definitions.

Definition 2.1.
Let w be a constituent sequence of the space Q, and let f be a polynomial. We 
denote by w(f) the counting number of the sequence w, so that w(f) is the number 
of polynomials of w which do not exceed f. We denote by w(n) the number of 
polynomials of w which degree do not exceed n. Furthermore let rf(w) and Rf (w) 
be as in the introduction.

Definition 2.2.
Let x: Q —> R denote a random variable. We denote by E(x(w)) the mean of 
x(w) and by V(x(w)) the variance of x(w).

Dtf/mzVzon 2.3.
S = Ap’, i = 1,2,3,4,2p1 = 2f (2.8)

dtp < df

Obviously we have:

w(f) = Card{g e w|g = < f} = Z Xg(w) (2.9)
g=<f

w(n) = Card {g G w|Sg T n} = 7) £g(w)
3ggn

(2.10)
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rt(w) = S Zç,Zf-<p(w) 
dtp <. 3f

Rf(w) = 2 Zf-p(w) 
peP

3p=3f
sign p=sign f

(2.11)

(2.12)

§3. A limit distribution for rf(w)

Theorem 3.1.
Let us choose a sequence {pr} of probabilities such that

V (rf) —> oo as df —> co

Then we have for — oo < x < oo :

lim P -W= 
af->oo \vV(rf)

< xj = O(x)

(3.1)

(3-2)

where O(x) denote the standard form of the normal distribution function.

Proof.
By the central limit theorem (see [3]) we need only to prove that the Lyapunov 
condition is satisfied.

That is :

Ve> 0:1
E agof

ZUf-g-PePf-g
— Af<2) (3-3)

as 0f oo

We obtain :

ZgZr-g pgpt-g

— (( 1 — pgPf-g)3P(B(g) n B(f_g)) + p|p3f_gP(C(B(g) n B(f-g)))) 
(At-V2>)2

E
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--------3 (pgpr-8 - 3pgP?-g + 4p3gp?_g - 2p4 p4_g)
(Af-V>)2

Hence we have :

S E
3g< 3f

XgZf-g pgpf-g I Âf-3Â*2>+42<3)-2Â*4)
(3-4-)

By (3.1) and (3.4) we have (3.3) and this proves the theorem.

Application of theorem 3.1.
We will prove that V(rf) —> oo as 9f oo in the case:

Pg =

1
2 3g < H

9g> h k2_65 logcj
(3-5)

Let Y denote a random variable such that

P(Y-k)=^ fork-1,2,..

We need the following lemmas:

Lemma 3.1.

V^Vq”

Proof. n-i n_!

First we note X x/k V^q1' = X \/n —k\/qn_k 
k=l k=l

Then we have :

1___
\/n \/qn

n—1 n—1
X x/ky/q^ = X 
k=l k=l

1 \/n — k
\/q-l \/n P(Y = k)
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1 p iVmax (0,n — Y)\ 1
v^-l \ VT. / ~" v^-l

since \/max (0,n — Y) 
“TT“ -> 1 and

Vn. \/max(0;n-Y; 
x/n < 1 •

Lemma 3.2.
Âf ~ k2 (\Æ[ + l)9f as 9f -> oo .

Proof.
We put 9f = n
FJence we obtain:

A = kî(q-1) ___ 1
x/nx/q"

fzv^x/q* +0(1)

Then by lemma 3.1 :

— ^kî(q-l) n
1

Vq-l
as n —> oo

and the lemma is proved.

Lemma 3.3.
Â<2) -> 0 as 3f-> oo

Proof.
Obvious.
Then by lemma 3.2 and lemma 3.3

(3.6)

(3-7)

V(rf) = Af — Äf2 ’ —> co as 91' oo
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§4. The law of large numbers for w(f)

By a variant of the strong law of large numbers (see [1]) we obtain the following 
theorem.

Theorem 4.1.
If

and

S E(Zg) = Z pg = + co
geFq[x] g6Fu[xJ

Tl)

Then with probability 1

s
feFJx]

V(Zt)
E2(w(f)) < + oo

r w 0 i hm ——ryrr = 1 af^oo E w f)

(4-2)

(4-3)

Applications of theorem 4.1.
We define:

1 3g =4
(4.4)

From this definition follows

Lemma 4.1.

E(w(n)) = X
3g = n

pg ~ y (logq) n2 as n -> oo

Lemma 4.2.
We have with probability 1
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w(n) oo (4.5)

where {pg} is defined by (4.4).

Proof.
By lemma 4.1 the conditions (4.1), (4.2) are satisfied since

v V(Zf) V - V b-3 
E2(w(fn k4 q <0°

f v ■ 11 k=l k=l

Then by (4.3) we have (4.5).

§5. Some results concerning the distribution of irreducibles 
in the ring over a finite field

Let M denote the multiplicative semigroup consisting of the polynomials f with 
sign f = 1 in the ring Fq [x].

Let B = xn + bn-xx”-1 +... + bn_kxn_k + ... T b0 be a polynomial in M. The 
field elements bn_!, bn_2,..., bn_k are called the first k coefficients of B, it being 
understood that bj = 0 if i < 0.

Let k be a non-negative integer, and let a sequence of k field elements be given. 
Let H be a polynomial in Fq [x] and let K be a polynomial prime to H. We denote 
by h the degree of H, and O(H) denotes the number of polynomials in M of 
degree h and prime to H.

Let 7i(n,H,k,K) denote the number of irreducibles in M of degree n which 
(1) are congruent to K modulo H and (2) have as first k coefficients the given 
field elements, then by comparing results in [4] and [5] we obtain the following 
explicit estimate.

.-r(n,H,k, K) qn 
nqkO (H)

n
^(k + h + l)q2 (5T)

In the estimate (5.1) we put

H = x, K = ß0 # 0 (e Fq), then SH = 1, (x,/%) = 1 and O (x) = q — 1.

Then we have the following estimate
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%(n,x,k, ß0) qn 
nqk(q — 1) < (k + l + l)q2 (5.2)

(5.2) implies the following lower bound estimate

7t(n,x,k,/?0) > qk(q_i) ~ (k + 2)q2 (5.3)

We denote by 7i(n,k) the number of irreducibles in M of degree n and with the k 
first coefficients being fixed. Then by (5.3) we obtain the lower bound estimate 
we need for the proof of theorem 1.2.

%(n,k) = S 7r(n,x,k,/30) >
Ä>eF*

(q-l)(k + 2)q2 (5.4)

§6. Proof of theorem 1.1 §1

We prove theorem 1.1 by establishing theorem 6.1 below.

Theorem 6.1.
Suppose that Q is the probability space generated in accordance with theorem 
2.1 §2 by the choice (3.5) of the probabilities pg. Then with probability 1 :

3f<S rf(w) <C 3f for large 9f. (6-1)

Proof.
We have {ZœZr-<Jdtp < 9f] are independent random variables such that: 

E( S z^Zf-J = E(rf) = f
\3g < 81 )

V(rf) = ;.t-z'2’

Vy:3^Of |Z9,Zf-ç3-E(Zç?Xf-93) I 1

1
2 ^-r 

Weput/' = vW 

large 3f. Hence by Bernstein’s improvement of Chebychev’s inequality (see [3] 
p. 387) we obtain the following result:

. Then by lemma 3.2 and lemma 3.3 §3: // \/V(rf) for



Hence by (6.2), (6.3) and (3.6) we have for large 3f:

p(|r,-Ar|>U,)Ê2e
Â, _ f 1 k?\/qaf\ _5
13 2q 13 -* = 2q 4 0f (6.4)

We put Ef = {w : I rt — Âf I
Then by (6.4) :

S P(Ef)<00 
feFJx]

(6.5)

Hence by the Borel-Cantelli lemma, with probability 1, at most a finite number 
of the events Ef can occur or equivalently:

P({w: |rt — ÂfI < i Âf for 3f >n0(w)}) = 1 (6.6)

(6.6) implies since Ât ~ kf (\/q + 1 ) 9f that :

P({w : 3f<^ rf(w) << 3f for large df}) = 1 (6.7)

This completes the proof of theorem 6.1.

7. Proof of theorem 1.2 §1

We prove theorem 1.2 by establishing theorem 7.1 below.

Theorem 7.1.
Suppose that Q is the probability space generated, in accordance with theorem 
2.1 §2 by the choice (4.4) §4 of the probabilities pg. Then with probability 1 :
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w(n) << n2

Rf(w) > 0 for 3f > n0 (w)

(7.1)

(7-2)

Proof.
By lemma 4.2 §4 we obtain (7.1). To establish the theorem, we must prove that, 
with probability l,Rt (w) > 0 for large df. By the Borel-Cantelli lemma we need 
only show that

2 P({w: Rf — 0}) < oo , (7.3)
feFJx]

and in view of (7.3) it suffices to establish the existence of a number d > 0 such that

P({w:Rf = 0})< q ~3f(1+d). (7.4)

Let f be a fixed polynomial of degree n and sign f = a (4= 0). We have the following 
estimate

P({w: Rf(w) = 0}) = Il P({w:/f_p = 0}) 
peP

Sp=0f
sign p=sign f

11(1— pf-p
peP

9p=3f
sign p=sign f

np(CB,f-p)) =
peP

9p=3f
sign p=sign f

(7-5)

l 2k
Il e_pf-p Si , 0 < £ < 1
k= I 0(f—p)=n—k

To obtain the estimate (7.4) we need first to establish a lower bound estimate 
for 1 and secondly an upper bound estimate for

9(f—p) =n—k

e_pf-p X 1 •
3(f— p)=n—k

Let
f = axn 4- an_,xn 1 + ... 4-an_kxn k4-...4-a( 
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p = axn + ßn_1xn 1+ ... + /3n_kxn k + ... + ß0

8 (f— p) = n — k =>

ßn —1 an —J

ßn—k+1 = an-k+1

ßn — k 4s an — k

By (5.4) we obtain

S 1 (7.6)
3(f— p)=n—k

= Card {p G P|9p = n; signp = a; /?n_i = an_i, i = 1,2,... k — 1 ; ßn_k 4= an_k}

= Card{p g P|dp = n; sign p = 1 ; yn_j = ^1, i = 1,2,... k — 1 ; yn-k 4=

> (q-l)(^-(q-l)(k + 2)q7)

(7.6) implies

e_Pf-P Z 1 e-Mq-l)2—^ [l-n(q-l)(k+2)qk-y. (7.7)
ø(f— p)=n—k

Now take any £x : 0 < < 1. Then for every k : k = 1,2,... ( 1 — fi) j we have

n(q — 1) (k + 2)qk~! «i if n > No (e, ei,q). (7.8)

Then by (7.7) and (7.8)

e-p-P Z 1 e-Mq-i)U-k) (i-£1) if n > No(«, £1;q) • (7.9)
3(f— p)=n—k

By (7.5) and (7.9) [|(i-e)l
P({w:Rt = 0}) e-Mq-i)U-*i) Z (7.10)

k=l

Take e = \Z^2. — 1 ( < 1), then we obtain
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To obtain (7.4) with d = 1
4 wc need only choose in (7.12)

(1 + 0)4 log q  20 log q 
(q-l)(l—£i) 3 q-1

and this proves the theorem.
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